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Editorial

Among women in the United States, ovarian cancer is the fifth
leading cause of cancer deaths, accounting for approximately 5%
of all cancer deaths, with an estimated 22,280 new cases this
year [1]. There are 239,000 new diagnoses and 152,000 deaths
from the disease in 2012 worldwide. The four most common
subtypes of ovarian cancer are serous, endometrioid, clear cell,
and mucinous carcinoma based on distinct clinical and biological
behaviors. Over 60% of ovarian cancer cases are diagnosed at a
late stage of distant metastases or invasion due to lack of
effective screening for detection. Currently, the standard
treatment approach for patient with ovarian cancer is surgical
intervention followed by platinum-based drugs plus taxane
chemotherapy [2,3]. The 5-year survival rate for ovarian cancer
patients with stage Il or IV disease is under 20%. No effective
therapy is available for relapsed or metastatic disease that has
failed first-line chemotherapy [4]. However, this landscape may
change because of the remarkable progress in precision
medicine and cancer immunotherapy.

Malignancy is considered a multi-factorial disease and the
influence of immunologic mechanisms on cancer progression
and prognosis has recently received much needed attention. The
role of immunotherapy in cancer treatment has been proved
with beneficial effect on tumor progression by augmenting
immunity  through  active and passive  strategies.
Immunotherapies for cancer treatment could be categorized
into certain four types, which are therapeutic vaccines,
cytokines, immune checkpoint inhibitors, and adoptive T cell
transfer. Therapeutic vaccines are designed to treat an existing
cancer by inducing the tumor-directed immunity and
strengthening the natural immune response against the tumor.
Cytokines, as immune modulators, are potent chemical signals
that manipulate immunocyte growth and activity to generate
the appropriate immune effector cells to eradicate solid tumors.
Immune checkpoint inhibitors are drugs, often made of
antibodies that prevent cancer cells from turning off functional
anti-tumor immunocytes. Adoptive T cell transfer involves the
isolation and reinfusion of potent and antigen-specific T
lymphocytes into patients to treat cancer.

Recent reports have demonstrated that cancer vaccine using
human papillomavirus (HPV)16 synthetic long peptide resulted
in complete and partial regression of high-grade HPV16-induced
vulvar intraepithelial neoplasia [5,6]. In addition, it was reported
that therapeutic vaccination against HPV16 has clinical benefit
and potential successful treatment in patients with high-grade
premalignant lesions of the cervix [7]. Another example is that
HER2 peptide-based vaccination combined with dendritic cells
treatment markedly decreases HER2 expression on HER2+ breast
ductal carcinoma [8]. These cases indicate that therapeutic
vaccine strategies have been successful in enlarging the pool of
tumor-specific T cells or reactivating existing tumor-specific T
cells. However, the activated T cells might encounter anergic
state or failure of homing to tumor without exerting their
function within the tumor, resulting in an unmet therapeutic
efficacy. Nowadays, a supportive co-treatment during
vaccination to achieve high immune response rates and properly
polarized T cell immune responses has progressed in ovarian
cancer treatment by combining with other therapies, such as
immune checkpoint inhibitors [9-11], chemotherapy [12,13] and
adoptive T cell therapy [14].

Cytokines, the messengers of the immune system, could be
used to activate the immune systems to suppress tumors. The
successful cytokine-based cancer therapy should directly
stimulate immune effector cells within the tumor and enhance
anti-tumor cytotoxic effect. Numerous animal studies have
demonstrated the broad antitumor effects of cytokines and this
has been further translated into clinical approaches against
tumor, such as IL-2, interferon (IFN), and granulocyte
macrophage colony-stimulating factor (GM-CSF, essential for
generation and expansion of dendritic cell for T cell activation).
IL-2 is the first cytokine successfully used in clinical cancer
therapy, but only effective in certain types of cancers. More
recently, IL-2 has been used as a key cytokine to promote the
activation and proliferation of T and NK cells in a combination
therapy [15,16]. The therapeutic potential of IFN is to exert a
cytostatic effect on tumor cells and promote tumor cell
apoptosis [17,18]. Although the antitumor effect of IFN is
effective against different types of tumors in animal models, its
clinical outcomes show limited therapeutic index. It is believed
that IFN may be an important regulator of antitumor activity
mediated by other cancer therapies. Likewise, current clinical
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trial for GM-CSF is combining GM-CSF with cancer vaccine
and/or immune checkpoint inhibitors to enhance antitumor
immunity and achieve objective cancer regression in ovarian
cancer patients [19,20].

Most studies of cancer immunotherapy to date have focused
on augmenting immunity through active or passive strategies.
One of the most promising strategies to induce T cells activation
is immune checkpoint inhibitors, such as CTLA-4 blockade that
has been demonstrated to improve immunity and clinical
outcomes [21,22] and the programmed death 1 (PD-1)/PD-L1
interruption that has been found to achieve an immune-
modulation approach in the treatment of solid tumors [23,24].
These important studies demonstrate that the concept of
reversing immunosuppression in cancer has clinical relevance
and provides further evidence that immune-based therapy will
eventually find a meaningful place in the anticancer treatment
armamentarium. Yet increasing evidence reveals the situation of
tumor microenvironment and consistence of tumor-infiltrating T
cells are much more complex, as we came to understand the
recruitment of regulatory T cells (Tregs) by ovarian cancer
[25-27], with poor prognosis [28]. Although the tumor
infiltrating Tregs are attenuated by anti-PD-1 and anti-CTLA-4
antibodies [29], the immune checkpoint blockade targeted
agents might represent greater therapeutic index by combining
with other anti-cancer therapies, such as Treg depletion and
adoptive T cell transfer.

Adoptive T cell therapy is a promising strategy to rapidly
establish tumor immunity by genetically engineered T cells to
harbor special antigen receptors, called chimeric antigen
receptors (CARs) that allow the T cells to exhibit an enormous
clinical impact of tumor eradication. The other strategy to
engineer T cells to recognize malignant cells is to express high-
affinity T cell receptors (TCRs) by virus transduction. The
potential for adoptive T cell transfer to treat cancer has been
reported marked tumor regression and long-term functional
antitumor activity in cancer patients, such as CD19 CAR-T cells
[30] and NY-ESO-1-reactive TCR T cells [31]. The clinical trial
using adoptive T cell therapy has further tested in patients with
ovarian cancer and revealed the potent therapeutic efficacy
[32-34]. Although the infusion of engineered T cells can improve
antitumor immune response, the presence of suppressive Tregs
[35] and severe off-target off-tumor toxicities [36] may not be
sufficient to overcome the inhibition. The challenge of
controlling T cells in a therapeutic setting highlights the practical
necessity to augment current adoptive transfer technology. An
opportunity to raise antitumor effect for adoptive T cell transfer
therapy might be strategies to combine with other cancer
therapies.

In conclusion, the future of immunotherapies for ovarian
cancer treatment looks bright. The current successes with
immunotherapeutic strategies in other cancers have indicated a
better therapeutic index compared to traditional therapies and
increase the survival rate of patients with malignancy. These
studies and the initial data in early-phase testing (phase | and 1)
for ovarian cancer immunotherapies suggest the approaches
may ultimately prove useful for ovarian cancer treatment.
Although the complexity of tumor microenvironment and
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antitumor immunity still remains elusive, the research of
decoding the mechanisms of tumor and immunocytes may
further develop better therapeutic strategies.
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